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a b s t r a c t

A suite of problems involving solid–fluid interactions with a two-dimensional

cylindrical structure, i.e. with non-oblique forcing or wave incidence, is considered.

Assessments are made of how the amount of filling in the interior effects the external

response of the cylinder both qualitatively and quantitatively, with a view to developing

Resonance frequencies are found and their usefulness, or otherwise, in characterising

the extent of inner filling fraction. Numerical algorithms are generated to grid the

domain and are complemented by a discussion of the use of perfectly matched layers to

model the infinite background fluid; it is demonstrated that it is preferable not to

directly attach the layer directly to the cylinder.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

There is a long-standing interest in the acoustical response of elastic objects and the countless tasks that rely on this
response. The reader will be familiar with the use of sonar to search for underwater objects such as submarines and mines.
Elsewhere, the non-invasive testing of containers is used to inspect and characterise their contents in applications such as
the identification of unexploded ordnance [1] or cargo screening. Recent events have shown that reliable means to identify
explosives and weapons, or other contraband and suspicious materials, and even stowaways, hidden inside containers
would be just as welcome to port authority and airport security operations.

It is for these reasons that the properties of both, cylindrical and spherical, shells which are completely filled with fluid,
or immersed within a fluid, or both, have been widely studied [2]. For example, the acoustic excitation of such shells, or
similar structures, in response to either long or short range testing, has been the subject of intensive scientific investigation
for the past 50 years [3,4]. Despite this, cylindrical or spherical shells containing an arbitrary amount of filling are far less
well studied other than some notable and recent exceptions [5–8]. The relative lack of information on the response of
arbitrarily filled objects can cause problems in reliably discriminating between objects or when trying to inspect the
interior of objects such as containers. In some cases, this can lead to an inappropriate decision, or action, being taken.

Previous investigations of this problem have been limited to specific configurations, either of the quantity and nature of
the filling, or on the geometry of the problem including the incident field. Here we are explicitly looking at how the
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response of the cylinder changes with the level of filling, between empty and completely filled, for cylinders submerged in
different fluids, with point or plane wave forcing, together with variations in observation angle and/or position.

Empty or fully filled cylinders, or shells, are relatively straightforward to model: their solutions are separable in a polar
coordinate system centred on the axis of the cylinder and Bessel function expansions generate exact dispersion relations
[9,10]. Additionally, a wide range of numerical techniques are on offer: one can use finite differences, in which uniform
grids in radial and angular directions are the obvious choice, and implementation requires only a basic understanding of
the method, or alternatively, one can use spectral collocation for which efficient pre-written algorithms for weight
generation exist [11]. The main numerical challenge is in dealing with submerged structures, as the modelling of an infinite
fluid requires the use of an absorbing boundary condition, such as the perfectly matched layer [12] (PML), as used in
this text.

By contrast, a study of arbitrarily filled objects imposes greater challenges, which limit the spectrum of available
methods. The coordinate system is no longer neatly separable and Bessel function expansions fail. An implementation of
the spectral collocation method rapidly becomes prohibitively cumbersome as standard algorithms, designed to work on
rectangular domains, are no longer applicable. Implementation using finite differences, as is done in this text, requires
careful house-keeping. The geometry of the problem necessitates the use of non-uniform grids, which further complicates
the application of difference formulae. Our experience has shown in these circumstances that three point differencing fail
to provide sufficient accuracy.

The method of choice for many practitioners is finite elements. There are many well known commercial packages that
are available to solve the problem of arbitrarily filled objects in more and more complicated domains with lesser or greater
detail e.g. [8]. Instead we choose a different route, and introduce a finite difference method that is tailored to the specific
geometry of the problem to hand. This provides us with greater control over the computational method and visibility of the
effects of such things as the grid size and spacing on the accuracy of different parts of the solution inside or outside the
cylinder. In particular, the method allows us to study the implementation of perfectly matched layers and exposes some of
the issues arising from the size and positioning of the PML which would have otherwise been invisible. We believe the
same would be true of more complex geometries, or partially embedded objects for example, which could still be studied
without the numerical modelling becoming prohibitively expensive or obscure, and where the solution is likely to be even
more sensitive to shape and size of the computational domain.

Our starting point, and the subject of the present article, is cylinders for which we shall address a variety of issues,
centred around the long and short range classifications of partly filled cylindrical objects, see Fig. 1, using non-destructive
testing techniques. After outlining the problem, and our numerical approach, we give a brief study into the effectiveness of
the perfectly matched layer method. In particular, we discuss how to minimise the size of the computational domain, and
thereby reduce the necessary computational resources, whilst maintaining accuracy. This will briefly include results
obtained using the light fluid loading approximation, in which one makes assumptions as to how the background fluid and
solid cylinder interact. Under this approximation the equations in the background fluid and cylinder/contents decouple,
and the surrounding fluid and PML do not need to be included in the modelling. This leads to a computational problem of
greatly reduced complexity; this limit is suitable for partly filled objects in air but performs poorly for submergence in
water. Cylinders submerged in water, which are of more practical importance, are then investigated and issues
surrounding the classification of fluid filling are made from observations outside or on the cylinder; in particular, we show
how the response of the cylinder depends on the amount of filling present. In each case we consider either forcing
concentrated at a single point on the cylinder surface, or forcing from infinity via an incoming plane. These model
situations when the structure can be interrogated either directly or only remotely. We conclude by suggesting extensions
of this study including the transient problem and stratified fluid fillings.
θ = 0 Background fluid

Fluid

Elastic

θ = θ1 rE

rF

Fig. 1. Polar coordinates centred on the cylinder axis with y¼ 0 pointing directly upwards. When we model a background fluid, the computational

domain also includes a layer of fluid and a region of perfectly matched layer (PML).



ARTICLE IN PRESS

S.D.M. Adams et al. / Journal of Sound and Vibration 329 (2010) 2147–2157 2149
2. Formulation

2.1. Basic equations

We consider an isotropic homogeneous elastic annulus E, occupying the region rF ororE, and assume it is partially
filled with an ideal acoustic fluid F, as shown in Fig. 1. When considering submerged cylinders, an ideal fluid B occupies the
region rEoro1. The extension of this geometry to partially embedded objects would follow in a similar way. Throughout
we shall use j in subscript to denote a parameter of material j, where j¼ F; E;B.

The usual equations for linear elasticity and ideal fluids (e.g. [13]) will apply:

mEr
2uþðlEþmEÞrðr � uÞ ¼ rE

q2u

qt2
; ljrðr � uÞ ¼ rj

q2u

qt2
; (1)

where u is used for displacement here (and henceforth), rj is density for j¼ F; E;B, and lE, mE, and lj for j¼ F;B are the Lamé
parameters for the elastic and two (inner and outer) fluids respectively. Only time-harmonic motions are considered, and
the multiplicative factor expð�iotÞ is considered understood and suppressed henceforth.

We impose continuity of normal displacement and of normal stress across interfaces between fluid and elastic
materials. For cases of less than fully filled cylinders, the free-space is assumed to be effectively in vacuo and so stress-free
conditions are taken on regions of the inner surface of the elastic annulus not in contact with fluid.

2.2. Perfectly matched layers

To model the infinite outer fluid domain B, we employ a perfectly matched layer (PML) [12]. We limit the physical domain of
the outer fluid to r¼ rB and introduce the PML within rBororP under the following coordinate transformations in this region:

r-rþ
i

o

Z r

rB

aðsÞds;
q
qr

-
1

S

q
qr
; (2)

hy-rþ
i

o

Z r

rB

aðsÞds where SðrÞ ¼ 1þ
iaðrÞ
o ; (3)

aðrÞ ¼ amaxðr�rBÞ
2=ðrP�rBÞ

2 (4)

in which hy is the scale-factor of the coordinate system; the scale-factor for r is unchanged from that of polar coordinates,
hr ¼ 1. The choice of decay function aðrÞ avoids numerical reflection from the PML-fluid boundary and obtains maximum
dissipation power [14]. Introducing the potential fj, defined by rfj ¼ qu=qt, and applying this transformation yields the
following equation for fB within the PML:
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qfB

qr
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BfB ¼ 0; (5)

where ZB ¼o=cB and cj ¼

ffiffiffiffiffiffiffiffiffiffiffi
lj=rj

q
for j¼ F;B are the wavespeeds in the fluid. The choice of a decay function with

ajr ¼ rB
¼ da=drjr ¼ rB

¼ 0 means that (5) reduces to the equation of motion within the fluid at the interface of the PML and
physical domain, r¼ rB.

2.3. Far field

To model forcing from the far field the formulation is modified slightly by specifying the incoming pressure field in the
outer fluid as a plane wave with unit amplitude at angle y¼ w. The potential in the outer fluid fB is split into an incoming
solution fBI and a scattered solution fBS in the normal way:

fB ¼fBIþfBS where fBI ¼ iexpðirðoZBÞ½cosðy�wÞ�Þ: (6)

The full solution and, in particular, the field in the outer fluid, is then reconstructed by summing the incident and
resulting scattered fields. In the absence of any sources it is well known that one can compute the outer field by integrating
around the solid–fluid interface [15]. If Green’s function, Gðr; y; r0; y0Þ, satisfies: ðr2

þðZBoÞ
2
ÞG¼ 0 away from ðr; yÞ ¼ ðr0;y0Þ,

where G has a source singularity, then fBSðr0; y0Þ can be expressed as an integral around the boundary of the cylinder:

fBSðr0; y0Þ ¼

Z 2p

0
G
qfBS

qr
�fBS

qG

qr

� �����
r ¼ rB

dy; (7)

where G¼ ð1=4iÞHð1Þ0 ðoZBRÞ is 2D free space Green’s function, Hð1Þ0 is the Hankel function of order 0, and R is the distance

between points ðr; yÞ and ðr0; y0Þ, R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½rcosðyÞ�r0cosðy0Þ�

2þ½rsinðyÞ�r0sinðy0Þ�
2Þ

q
.

The solution at any point within the outer fluid domain B can thus be computed by solving the problem numerically to
produce values of fBS and qfBS=qr on r¼ rB, the cylinder surface, and then performing the integral numerically; the
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trapezoid rule is well suited to this as it benefits from fast convergence on periodic domains [16]. We only require the
computational solution around the boundary r¼ rB, and to obtain this efficiently we wish to model as little of the outer
fluid as possible and later we investigate how small the computational domain can be made.

We also require the far-field solution, as r-1, fBSðr0; y0Þ � r�1=2
0 expðioZBr0ÞDðy0Þwhere Dðy0Þ is the directivity given by

Dðy0Þ ¼

Z 2p

0

~G
qfBS

qr
�fBS

q ~G
qr

 !�����
r ¼ rB

dy; (8)

where ~Gðy; y0Þ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=poZB

p
e�ip=4expð�ioZBrcosðy�y0ÞÞ.

3. Computational method

3.1. Gridding the domain

The primary challenge to modelling the response of a cylinder with different levels of filling is to introduce a grid in
such a way that one can compute accurate derivatives throughout the domain; it soon transpires that this grid cannot be
evenly spaced. The natural coordinate system is polar coordinates, centred on the axis of the cylinder. This constrains all
grid points to lie either on rays (lines of constant y) or on circles (lines of constant r). The special cases of an empty or full
cylinder are straightforward; problems in which the amount of filling is arbitrary are solved in two different ways,
depending on whether the cylinder is more or less than half full. In each case, we begin by distributing grid points on the
free-surface, leading to non-uniform grid spacing in both r and y directions. We assume that the differencing formulae use
mr and my points in the r and y directions respectively; in practice, optimal efficiency was obtained with mr ¼my ¼ 5.

If we consider the less than half filled case, shown in Fig. 2 when the radius of the fluid domain is 1 and the elastic
material has been omitted for clarity, a mr point approximation of r derivatives is formed first on the outermost rays y1 and
2p�y1 starting at the point of intersection of the free-surface with the elastic material. Grid points are then added along
each of the other rays yn, where y1o � � �oynop, that have been defined by the points on the free-surface. This specifies
all grid points within the fluid filling; some care must be taken to ensure that the grid is sufficiently dense everywhere.

The incomplete circle r¼ rn contains 2ðN�nþ1Þþ1 points, and in particular, circles r¼ rn for n4N�ðmy�1Þ=2þ1
contain less than my points; on these circles 2ðN�nþ1Þþ1omy differencing is employed. No y-differencing is available at
the mid point of the free surface but boundary conditions independent of y derivatives are imposed here so that
y-derivatives are not required.

Once the grid within the fluid filling has been established, separate grids are needed for the elastic material and, if
required, the outer fluid and PML. The grid within the elastic material must contain the same points as on the circle r¼ 1
within the fluid-filling-grid, to enable application of interface conditions; thus part of the elastic-grid in the y-direction is
already established. The remainder of the grid in this direction is uniformly spaced; the spacing is taken as large as possible
such that it is less than the maximum grid spacing used in the fluid-filling domain. The same grid in the y-direction is used
within the outer fluid and PML domains, and each of these grids are uniformly spaced in the r-direction.

The grid in each material is then re-ordered into a single column vector, and differentiation matrices are then composed
to act on this vector using a pre-written algorithm [17]. Particular care must be taken when acquiring the weights for
points near the boundaries of the domain in the r-direction and to correctly incorporate the periodicity of the y coordinate.
In the more than half filled case, the centre has been excluded from the grid to avoid the singularity there, and one-sided
differences are employed. The boundary and interface conditions are carefully applied using separate equations to enforce
them. Further details of the numerical method and procedure can be found in [18]. Numerical checks, such as altering the
relative discretization size in the elastic shell and fluid, increasing the gridpoints were employed.

It is worth noting at this stage that using non-zero forcing only at a single grid-point is not advocated, as this can lead to
a solution dependent on the number of grid points used. The n-order finite difference approximation to a derivative at
point P is equivalent to finding the analytic derivative at P of the unique polynomial, of order at most n�1, passing through
the n points closest to P. Thus as the grid becomes finer, so the power of the forcing (area under a force–distance curve)
decreases, leading to amplitude dependent on number of grid points. To model concentrated forcing, we instead apply
(1, θ1)
Free fluid surface

Interface with elastic

Fig. 2. An example grid for cylinders less than half filled. Nodes are shown as circles, the free-fluid surface is indicated by a dashed curve. The interface

with the elastic material is on the left of the figure, although the mesh within the elastic has been omitted for clarity.
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forcing with a Gaussian distribution of fixed concentration over a small number of grid points (at least the order of
differencing used). Investigation has shown independence of the solution on the number of grid points used and
henceforth we refer to this forcing profile as point forcing.

3.2. Minimising the size of the computational domain

We begin by investigating how small one can take the computational domain whilst retaining accuracy; for
computational efficiency, one wishes to model the least amount of fluid possible. We consider an acoustically hard cylinder
immersed in an infinite fluid, subjected to an incoming plane-wave; an exact analytic series solution is available [9], and is
used as a reference solution for comparison. Further, this test problem serves to provide validation of the numerical
method employed, in particular the use of the PML.

We suppose a cylinder occupying region ro1 is immersed within an infinite ideal acoustic fluid. A potential c is
defined within the fluid, and taking wavespeed c¼ 1 for simplicity, one arrives at

ðr2
þo2Þc¼ 0 for r41;

qc
qr
¼ 0 on r¼ 1: (9)

We split the field into an incoming and scattered solution: c¼cIþcS, where cI ¼ expðiorcosðyÞÞ, is an incoming plane
wave at angle 0. It follows that qcS=qrjr ¼ 1 ¼�iocosðyÞexpðiocosðyÞÞ on the surface of the cylinder, and hence the
directivity of the scattered far field, Dðy0Þ can be computed using (8), provided cSjr ¼ 1 can be found computationally. The
directivity can also be found directly from the series solution, which we denote ~Dðy0Þ. We define the error between
computational and exact solutions as

error¼ max
0oy0 o2p

jDðy0Þ�
~Dðy0Þj= max

0oy0 o2p
j ~Dðy0Þj: (10)

The motivation for this choice is to avoid giving misleadingly large errors near points of small amplitude; this would be the
case if we simply computed the relative error throughout and took the maximum over 0ry0o2p.

We then model an annulus of fluid occupying 1oroR, so that the length of the fluid domain is L¼ R�1, and a perfectly
matched layer one wavelength long. The number of points per wavelength, the key criterion in determining the accuracy of
the difference scheme, is held constant to avoid any bias within the results. We aim to establish how much surrounding
fluid, if any, must be modelled to obtain an accurate solution. It is worth noting that various authors model the infinite
fluid with PML directly attached to the cylinder surface [19].

Fig. 3 shows the error made by the computational solution as a function of the length of the fluid domain, L, divided by
the wavelength, l¼ 2p=o, for frequencies o¼ 1;4;10. When the PML is taken either on or close to the surface of the
cylinder, large errors are observed in the computed far field solution at all frequencies shown. As more fluid is modelled,
the errors decrease and, at some frequency dependent value, become much less dependant on domain length. We
conjecture that the appearance of these errors is closely connected with creeping waves [20]. A creeping wave within the
fluid is one localised to the vicinity of the cylinder, and which decays exponentially with perpendicular distance. The
problem of waves running around elastic shells submerged in fluid has been widely studied e.g. [21,22] and it is well
known that the wave does not exist in an infinite fluid region in the absence of obstacles, which is what the PML is
modelling. The addition of a PML will not poison the solution, provided the creeping wave has amplitude comparable to
the numerical error as it enters the layer, however if this assumption is violated we should no longer neglect the creeping
wave and errors are introduced as a result of doing so.

By transforming the series solution into an integral [20] it can be shown that the creeping wave decays into the outer
fluid: the solution is exponentially small at a perpendicular distance of Oð½o=c��1=3Þ from the cylinder. Thus L=l is required
to be at least Oðo2=3=cÞ for an accurate model, which corresponds with the observation from Fig. 3 that errors level off by
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

−4

−3

−2

−1

lo
g 1

0 
(e

rr
or

)

L/λ

Fig. 3. Error, (10), made by the computational solution, as compared to the analytic series solution, for frequencies o¼ 1;4;10 shown by solid, dashed

and dotted lines respectively for varying amount of fluid included in the model.
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L=l� ð3=2Þ½o=c�2=3. As a result of these findings we henceforth impose that the outer fluid domain in the following
computations has L¼ ð3=2Þl½o=c�2=3, to ensure sufficient decay of the creeping wave before entering the PML, whilst
minimising the size of the computational domain.

The complexity of the problem can be reduced further by using the light fluid approximation [23] whenever it is
applicable, that is, if the cylinder is submerged in air. Here, the density of the outer fluid rB-0 whilst the wavespeed
cB ¼ ðlB=rBÞ

1=2 is held constant, and the equations governing the outer fluid decouple from the elastic and filling, allowing
us to solve only the elastic/filling problem computationally. This negates the complications of modelling the background
fluid and perfectly matched layer, and drastically reduces the model size. To apply this approximation it is necessary to
replace the field in the outer fluid, for the case of an incoming plane wave, with the sum of the incident field, the field that
would be scattered from a rigid cylinder (known analytically [20]), and the unknown scattered field, that is now a
correction to the rigid cylinder solution. The forcing on the cylinder then becomes the sum of the incident field and the
scattered field from a rigid cylinder, which are both known, and the response of the cylinder can be calculated by solving
only the elastic/filling problem, that is, without modelling the outer fluid. One can then reconstruct the field in the outer
fluid and the far field directivity using (7) and (8) respectively, together with the resulting displacement field on the
surface of the cylinder.
4. Results

To study the sensitivity of the response (scattered far-field directivity or displacement of the elastic cylinder) of the
cylinder to the level of filling, results are provided in this section for combinations of cylinders and different levels of filling,
together with variations in incoming and/or observation angle. In particular, we are interested in how the response
changes with the level of filling, and in the usefulness, or otherwise, of the response to estimate the nature and level of
filling based on short or long-range observations.

In all results presented in this section, five point differencing is used in both r and y directions. All point forces are
applied in a time harmonic manner as described in the formulation in Section 2. Outer and inner radii of the cylinder in
question are rE ¼ 1 m and rF ¼ 0:9 m respectively. For illustration we have chosen the fluid filling to be glycerine, which has
cF ¼ 1860 m=s, rF ¼ 1258 kg=m3; the elastic material is taken to be steel, with parameters cL ¼ 5960 m=s, cT ¼ 3260 m=s,
rE ¼ 7700 kg=m3. Similar commentary to that presented below would follow for other combinations of materials or size
and thickness ratio, but is not included explicitly here.

The light fluid approximation can be used when the cylinder is immersed in air, or another gas, and then performs very
well, however, for cylinders immersed in water the approximation is poor and we only illustrate it in Fig. 6.

We begin by considering a partly filled cylinder in vacuo where a point harmonic force is applied normal to the
cylinder’s outer surface, at r¼ 1, y¼ 0 such that the displacement at the point of impact is unity. Fig. 4(a) shows how
the response of the cylinder evolves as the quantity of filling changes; the positions of the resonant frequencies observed in
the normal displacement at the outer surface of the cylinder are plotted for different levels of filling between empty and
completely filled. Filling quantity is measured here and henceforth by volume: a cylinder 1/3 full is taken to mean 1/3 of
the region 0rrorF is occupied by filling. The exact nature of the response depends on where at the surface the
displacement is measured, but the maxima in displacement (plotted in Fig. 4) are observed at the same discrete set of
frequencies.

A very fine discretization of the frequency spectrum is required to resolve resonances effectively, due to the strong
localisation of responses, and identification by scanning through a range of frequencies and identifying maxima is thus
computationally intensive. Strong responses at a discrete set of resonance frequencies are also observed in the far field.

There is a form of resonance mode repulsion shown in Fig. 4: modes look set to cross but then repel one another, a
phenomena observed in a wide variety of situations, for example in dispersion curve analysis [4]. With this information,
one could imagine measuring the acoustic response of a cylinder whose properties were known a priori and so estimate the
quantity of filling, or discriminate between objects that were not empty or completed filled. This example shows that the
sensitivity of the response to the quantity of filling increases with frequency. In practice, it would be necessary to optimise
the frequency bandwidth that was measured in order that the acoustic wavelength was comparable to, or longer than, the
size of the object (so that energy can readily penetrate) but also still sensitive to filling.

We demonstrate how the resonances shift as the filling quantity changes by choosing two points to investigate. Panel
(a) of Fig. 4 shows two vertical dashed lines at our points of investigation, at filling quantities of 10 percent and 20 percent.
We highlight the tenth mode by circles, as this mode undergoes the most rapid evolution of those plotted. Panel (b) shows
a portion of the amplitude–frequency curves for our points of investigation, for 10 percent filling (solid curves) and 20
percent filling (dashed curves), and an arrow is drawn to indicate that mode circled in panel (a). It is worth bearing in mind
that it is important for the modelling to incorporate this filling, and other modelling, in the absence of filling, or in
approximating the filling to empty or completely filled, would no longer be representative of the response of the object.

In the previous example, point forcing was applied at angle y¼ 0, atop of the cylinder. We note that when the position
of the point forcing is changed, the response of the cylinder does not change greatly. The analogue of the previous figure in
the case of forcing at y¼ p has lower, flatter, resonance modes in identical positions and only slightly perturbs the
positions of the higher modes. This further emphasises the aforementioned point that the resonance frequencies of the
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Fig. 4. (a) Evolution of resonance frequencies as the quantity of filling in the cylinder changes. Two such resonances are circled and their frequency–

amplitude (maximal normal displacement) curves are shown in panel (b), with solid curves (10% filling) and dashed curves (20% filling). We draw

attention to a mode whose resonance moves significantly between these values, shown by an arrow in (b). This is for a part-filled cylinder in vacuo.

Fig. 5. Response (normal displacement) on the surface of a partly filled cylinder, submerged in water, at y¼ p=3, when forced at y¼ 0. This is for the

specific case of 2
3 filling.
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structure are largely independent of locations of measurement and forcing. We note also that tracking resonance
frequencies offers no insight into the relative strengths of those resonances, nor how that strength varies with the quantity
of filling. For example, the response of the seventh resonance (at � 1:3 kHz for the empty cylinder) is very much weaker
than resonances pictured at � 1:1, � 1:45 and � 1:8 kHz in Fig. 4(b), but is stronger for fillings greater than � 25 percent
(not shown here).

When the cylinder is submerged in a fluid, such as water, the relationship between the response and the level of filling
appears unchanged; similar behaviour has been observed for objects completely buried in the ground or sediment or
otherwise embedded in another medium [24]. However, the strength of the resonant frequencies is vastly diminished; the
surrounding fluid serves to damp the response from the cylinder and, in particular, the response at high frequency, so that
lower frequencies would need to be utilised, for example, in any characterisation of classification [25]. To illustrate this,
Fig. 5 shows the response of a cylinder, 2

3 full, immersed in water (cB ¼ 1421 m=s, rB ¼ 1000 kg=m3) forced on the outer
surface at y¼ 0. The point of measurement is on the cylinder surface at y¼ p=3 and the force amplitude is such that the
displacement at the point of impact is unity.
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Fig. 6. The magnitude of the far field directivity, jDj (8), for a cylinder 2
3 full, immersed in air, and irradiated by an incoming plane wave at y¼ p=4. A

comparison between the light fluid approximation (solid curves) and the full model (dashed curves) is presented; the quality of the agreement means the

dashed curves lie wholly beneath the solid curves. The inset shows the light fluid solution as a solid curve, and crosses indicate the results of the full

solution. An arrow on the figure indicates the direction of the incoming wave.
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We now turn our attention to the scattered far field directivity (8) and then the total field inside and outside the
cylinder. Fig. 6 shows the far field directivity for a cylinder, 2

3 full, immersed in air, and irradiated by a 1 kHz incoming plane
wave at angle y¼ p=4. We take this opportunity to compare results obtained using the light fluid approximation to those
from the full model, which is discussed in the next section. Results from the light fluid approximation are shown as solid
curves, and those obtained using the full model are shown as dashed curves; though indistinguishable on the figure. The
inset shows a zoom of the centre of the figure, and a selection of data points extracted from the full solution are plotted as
crosses. The agreement is excellent, with a maximum relative error of 0.58 percent. The equivalent comparison in the
submerged case yields poor results, as noted previously.

For problems in which plane wave forcing is utilised one may be interested in measuring the scattered far field at some
set of discrete angles around the cylinder, not necessarily limited to the angle of plane wave incidence. It is evident in Fig. 6
that there is a discrete set of angles at which the far field amplitude has a maxima, including a large response in the
forward direction, though this is more apparent at higher frequencies. Classification of those angles may provide further
characteristic traits of the cylinder under investigation, and one may be able to infer an optimal choice of angle.

Figs. 7 and 8 show the displacement and energy density field respectively of a submerged cylinder subjected to a 2 kHz
incoming plane wave at an angle w¼ p=4. The filling and a portion of the fluid surrounding the cylinder, which is 2

3 full, are
also shown. An arrow is pictured to indicate the direction of incidence of the incoming plane wave. The energy plot shows
that most of the energy is reflected back into the fluid, contained within p=2 of the incidence angle, and that a shadow
region is observed at y¼ 5p=4. The figure also demonstrates that very little of the energy is transmitted into the filling of
the cylinder.

In practice when classifying an object by measuring it remotely, it is typically the case that one is only able to measure
the response in the far field at a few, discrete, points; often including the angle of forcing. We consider cases in which the
angle of the incoming plane wave, w, and the angle at which the far field is measured, y, are the same. Fig. 9(a) shows the
far field response across a spectrum of frequencies for y¼ w¼ p=4 for a cylinder 2

3 full. There are a number of points at
which the directivity achieves minima, at which points it has discontinuous first derivative; these emerge as resonance
frequencies of the structure. We observed that away from such sharp minima, the response varies little with angle of
forcing/measurement, however investigation at these special frequencies shows strong dependence on w.

We present two examples in panels of Figs. 9(b) and (c). Panel (b) shows the far field observed at y¼ w for all 0rwo2p
in the case when such a minimum occurs, at 2 kHz, circled in panel (a). This plot should not be confused with Fig. 6, in
which the cylinder was irradiated from a fixed angle and the resulting directivity was found for all y. There are a number of
angles at which the directivity is large, and a minimum is observed at y¼ p=3. By contrast results in panel (c), observed at a
maximum at 2.6 kHz, also circled in panel (a), show very little variation with w. At this frequency, the position chosen to
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Fig. 7. (Colour online) The displacement field of a cylinder 2
3 full, submerged in water, subject to a 2 kHz incoming plane wave at an angle y¼ p=4.

Fig. 8. (Colour online) The energy density of a cylinder 2
3 full, submerged in water, full subject to a 2 kHz incoming plane wave at an angle y¼ p=4.

S.D.M. Adams et al. / Journal of Sound and Vibration 329 (2010) 2147–2157 2155
force and measure the cylinder is irrelevant; there are no preferred directions as in panel (b). This phenomena was not
limited to the maxima, but observed at all frequencies away from the resonances observed in panel (a).

5. Conclusions

The response of submerged and partially filled cylindrical structures to different levels of filling has been studied in this
paper; such problems are potentially useful in detecting and characterising underwater objects including long range
testing. We have introduced and outlined a new computational method to model the non-uniform domains needed to
address arbitrarily filled cylinders. We have carefully discussed the use of perfectly matched layers in cylindrical
coordinates and discovered that care needs to be taken with their application, in particular with regard to whether these
layers can be placed very close to the cylinder surface. An adequate distance away from the surface is necessary to ensure
that elements of the physical solution are preserved, in particular the creeping wave that propagates into the shadow
region of the cylinder.

We have provided results for a set of problems, including point and plane wave forcing, on cylinders immersed in
different fluids, and offered a discussion on the relationship between the resonances that are observed and the level of
filling. In all cases, strongly localised responses occur, and in the future these could provide an avenue through which the
inverse problem could be tackled e.g. to infer how much filling is present. However, large responses are not always evident,
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Fig. 9. A cylinder which is 2
3 full, and submerged in water, is irradiated by an incoming plane wave applied at angle w, and the magnitude of the far field

directivity, (8), is measured at y¼ w (incidence angle). Panel (a) shows the variation of the absolute value of directivity with frequency for w¼ p=4, and

panels (b) and (c) show jDj for all 0rwo2p at the specific frequencies 2 kHz (resonance) and 2.6 kHz (off resonance) respectively, both of which are

circled in panel (a). At resonance, there is strong variation in response with w, however off resonance the variation is insignificant.
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for example, when the cylinder is forced from the surrounding fluid, and this is likely to complicate any effort to classify or
characterise the object.

One could readily extend this work to include an investigation into how the response of the structure varies with
different materials. If, for example, the cylinder dimensions are known, and it is known a priori that the cylinder contains
one of a limited number of fluids, testing each situation separately is expected to yield characteristic responses of the
materials. Otherwise, the response could also be tested for the nature of the filling.

We chose at the outset to fix parameters, such as the nature of the fluid filling and the cylinder dimensions/material, to
present a clear picture of how responses vary with quantity of filling. However there are numerous ways in which one
could utilise the method contained herein to extend this work. The transient problem could be readily approached: the
choice of mesh, and spatial differentiation matrices required are unchanged, and the only difference is the requirement to
implement a time-stepping routine to Eq. (1). Alternatively, investigation into a stratified fluid would require only that the
equation governing the filling be changed. Modelling a layered fluid would require some modification to the gridding
algorithm. One would need to impose that grid points lay along fluid interfaces and continuity conditions hold, however
after such changes, generation of differentiation matrices would be straightforward, as the same weight-formulae
would apply.
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[3] R.D. Doolittle, H. Überall, Sound scattering by elastic cylindrical shells, J. Acoust. Soc. Am. 39 (1966) 272–275.
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